
 - 1 -

Suite 2-212
111 College Place
Syracuse, New York 13244
(315) 445-8701
(413) 803-3016 Fax
sales@sensyr.com

TNG-5:

The TNG-5 family of devices consists of three models: the full version (TNG-5), a mid-scale
Version (TNG-5 Lite), and a minimal version (TNG-5 UltraLite). A prototype of the full version
is currently being developed and tested. A comparison chart of all the TNGs, including the
anticipated TNG-5 line is shown below.

Fig. 1. TNG Comparison Table

TNG-3b TNG-4 TNG-5
Full Version

TNG-5
Lite

TNG-5
UltraLite

I/O Connectors Phone Jacks RJ-12 RJ-45 RJ-45 RJ-45
Analog Inputs 8 8 16 8 8
Analog Input Resolution 8-bits 8/10/12 bits1 10-bits 10-bits 10-bits
Digital I/O Lines 8 (input only) 16 User-defined I/O 16User-defined I/O 16 User-defined I/O 16 User-defined I/O
Analog Outputs None 4 8-bit (0-4 V) None None None
SPI Ports none 1 Port;

8 software-selectable
enable lines

2 Ports;
8 software-selectable

enable lines

2 Ports;
8 software-selectable

enable lines

1 Port;
8 software-selectable

enable lines
RS-232 Ports none none 1 Port - either TTL

or true RS-232 levels
dependent on how the

board is populated.

none none

User-definable ports none none 2 Ports. Each port
supports up to 4 lines.
Function is defined by

the installed mezzanine
function board.

none none

Interface RS-232
19.2 kbps

 Bidrectional RS-232
19.2 kbps2

Bidrectional
LAN / USB / RS-232

128 kbps3

Bidrectional
LAN / USB / RS-232

128 kbps3

 Bidrectional RS-232
128 kbps

Streaming Mode Sample Rate 192 samples/s ~190 samples/s ~400 samples/s ~800 samples/s ~800 samples/s
Power Serial Port

Powered Only
RS-232 Port /

External Power
USB or RS-232

Powered /
External Power

USB or RS-232
Powered /

External Power

RS-232 Port /
External Power

Operating Modes Streaming Streaming or
Command:

Depends on installed
firmware.

Streaming or
Command:

Depends on switch
setting.

Streaming or
Command:

Depends on switch
setting.

Streaming or
Command:

Depends on switch
setting.

ICSP No No Yes Yes Yes
Downloadable Firmware No No Yes4 Yes4 Yes4

Electrical Isolation No Yes Yes Yes No
1 Depends on installed processor.
2 Speeds up to 57.6 kbps optional.
3 Only one interface can be implemented on any one board.
4 If firmware supported

 - 2 -

TNG-5 dramatically increases the capabilities of TNG. A limited model, TNG-5 “lite”
effectively replaces TNG-4 with a similar set of I/O; however, the 4-channel DAC will be
expunged in favor of a second SPI expansion port. The full TNG-5 has 16 analog input channels,
16 digital I/O lines, 2 SPI expansion ports, an RS-232 port (RJ-12 connector), two special-
purpose ports, and an optional connector for the insertion of a Multi-Media Card (MMC)
memory module.

Both the full and lite versions of TNG-5 support 10-bit ADC resolution, external power options,
electrical isolation of the I/O ports from the computer interface, two independent voltage
regulators, USB communications, and faster data rates. Board population options allow
continued support for legacy RS-232 applications. Either TNG-5 will have about 60 milliamps
(mA) of available power when connected as a bus-powered USB device without an external
power source. The addition of an external power source allows for up to 500 mA of power for
TNG-5 operations.

The TNG-5 "UltraLite" version only supports an RS-232 interface, has eight 10-bit resolution
analog inputs, a digital I/O lines, and one SPI port. Electrical isolation is not supported. This
version is intended for use with handheld computers.

TNG-5 connectivity changes yet again. Instead of RJ-12 modular connector, all TNG-5 versions
use 8-conductor, RJ-45 modular connectors. The RJ-45 connectors should prove to be more
robust than the RJ-12 modular connectors. Additionally, the RJ-45 connectors possess two more
pins—one is used as an additional ground conductor, and the other used to provide either the
principal TNG-5 operating voltage (Vcc) or the voltage from the secondary regulator (jumper
selectable).

Both the full and lite versions of TNG-5 provide for an optional secondary regulated power bus
that can be made available by jumper selection on all the RJ-45 ports. The secondary regulated
power bus is down-regulated from the primary regulated power. This secondary voltage is
resistor-programmable (as is the primary supply), and can be set in the range of 1.2 through
(Vcc-0.4) volts. Now it becomes possible to operate sensors and peripherals at 3.3 V without
down-regulating at the peripheral, or operating the entire TNG at 3.3 volts.

Normally, TNG-5 is configured such that it is powered off until DTR is asserted. If powered only
through the external power jack, TNG-5 can be wired to be always on for any interface. The
USB interface supports power up on enumeration as a population option.

The full and lite versions of TNG-5 support an ethernet interface as a population option. Such a
web-enabled TNG-5 has huge potential for new applications. Now the TNG-5 and its host
computer can be miles, even continents, apart. 802.11 wireless connectivity is possible with a
proper application of wireless bridges and/or access points. A TNG-5 operating as an ethernet
device does have some limitations: the device can only be operated with an external power
source, and there would be no electrical isolation feature.

All the TNG-5 models can be programmed and reprogrammed via the in-circuit serial
programming (ICSP) header. This feature allows the firmware to be updated as necessary.

 - 3 -

Knowledgeable end-users could adapt TNG-5 devices to their own specialized applications by
writing their own firmware.

Even more exciting is the potential of downloading new firmware to TNG-5 devices over the
device’s interface connection. This feature will not only make firmware updates virtually
painless, but opens the door to not nearly instantaneous adaptation of TNG-5 for various end-
user applications.

All that past TNG firmware has done is essentially pass data to and from the host computer. If
the application required some closed loop control or condition monitoring, the host computer had
to do it. With the advent of downloadable firmware, custom TNG-5 applications can be
developed, and the loop can be closed in TNG-5. In other words, TNG-5 can be given the smarts
to make its own decisions and process its own data.

For example, let's say the desired application is to monitor and maintain a water bath at a
constant, set temperature. TNG-4 could be set up to perform this function, but the host computer
would have to continuously run a NeatTools or LabView program. TNG-5 with customized
firmware could be configured to run this application independently. The host computer wouldn't
even have to be on. The host computer, then, would only have to communicate with the
dedicated TNG-5 to monitor the current temperature or set a new temperature. A web-enabled
TNG-5 could be programmed to perform the application function, as well as to send emergency
e-mail alerts should a fault condition be detected.

These are three unique features of the full TNG-5 that vastly expand its utility over previous
versions.

The full version of TNG-5 has a population option that supports a multi-media card connector. A
TNG-5 with this feature could now be programmed to act as a data logger. Using a 64 MB
MMC, and assuming a 64 byte storage packet, over 1 million time-stamped data packets could
be stored. At the rate of one point per second, more than 10 days of data could be accumulated,
or more than one day’s data at 10 samples per second. A 256 MB MMC has room to store 100
64-byte data packets per second for more than 24 hours.

The second unique feature of the full version of TNG-5 is its RS-232 port. This feature allows
TNG-5 to connect to peripheral devices that require an RS-232 interface. There's great flexibility
in how the support can be implemented. Population options allow the support to be used as a
genuine, 3-wire RS-232 serial interface using standard RS-232 voltage levels. Alternatively, the
port can source inverted or non-inverted TTL-level RS-232 signals. It all depends on how the
board is populated. When TNG-5 is operated with an external power source, this RS-232 port is
electrically isolated from the host computer, provided the attached serial device is also not
electrically connected to the host computer.

The third in each feature of the full version of TNG-5 is its two special-purpose ports. The power
and ground pins of these ports are allocated the same as with all the other TNG-5 ports. The four
signal pins of a special-purpose port, however, are defined by its corresponding mezzanine card.
A mezzanine card is a special-purpose printed circuit board approximately 1.8 in. long by 0.8 in.

 - 4 -

wide. The mezzanine card has two sets of pins on either end that allow it to mate with sockets on
the TNG-5 printed circuit board in only one orientation, preventing erroneous insertion. The
mezzanine card's interface to the TNG-5 microcontroller makes the mezzanine card appear to be
another SPI port.

This feature conveys immense flexibility to TNG-5. Mezzanine cards can be made to perform a
wide variety of functions, and don't even have to define the pins on the special-purpose port. An
example of this might be a real-time clock module to assist in data logging applications. Just
some of the possible mezzanine card candidates include 4-channel DACs of varying resolutions,
a high-resolution 4-channel ADC, a precision strain gauge interface, and a multichannel
thermocouple interface. Another choice would be a generic mezzanine card for prototyping
application-specific circuits. The list is almost endless.

The real payoff, however, is that the use of all of these multifunction cards would not be
restricted to the full version of TNG-5. A carrier board can be made such that the TNG-5
mezzanine cards will also plug into the carrier board, and because the TNG-5/mezzanine card
interface is based on SPI, the combined carrier board in mezzanine card can be attached to any
SPI port on either of the other two TNG-5 versions. This eliminates having to develop separate
printed circuit boards for mezzanine use and external use.

So there it is: TNG-5 packs quite a wallop! TNG-5 has different versions for different
application environments. TNG-5 has new, faster host interfaces. ICSP and downloadable
firmware, make theTNG-5 family of devices more adaptable to applications, and open the door
to stand-alone control or data logging applications. The full version of TNG-5 sports new
interfaces and ports, and eight more analog inputs.

TNG-5 Feature Bullets:

• USB Interface: acts as a virtual COM port at 128 kbps (max).

• Asserting DTR powers up TNG-5.

• 16 ADC inputs, 10-bit resolution, 0-5 VDC input range.

• 16 Individually-configurable digital I/O lines (source/sink 20 mA).

• 2 Built-in SPI expansion port connectors.

• 2 Mezzanine-defined SPI-like port connectors.

• 1 RS-232 port (true RS-232 or TTL levels (inverted/non-inverted); TX and RX only).

• Optional MMC interface.

• Each port connector (except the RS-232 port) has 2 ground and 2 power pins where one of
the power pins can be selected as either the primary (5V) or secondary (3V) power source via
a board jumper.

 - 5 -

Software Considerations:
The addition of new features and interfaces present a host of software issues relative to previous
TNG versions that need addressing:

• ADC resolution: Previous command mode versions allowed either 8- or extended- bit
resolution. Streaming software had 8-bit versions and a special 10-bit version for the TNG-
4X. I see no reason to be able to switch resolution with this faster device. If all you want is 8-
bit resolution, throw away the LSB (see next section).

• ADC result justification: Previous command mode versions supported left- or right-justfied
bits in the result. The TNG-4X module used left-justified results. Again, I see no reason to

 - 6 -

support both justification schemes. The left-justified version has its advantages: ADC results
from all ADC resolutions (8, 10, and 12-bits) can be treated the same.

• ADC channels: Previous versions only supported 8 channels. New software needs to
accommodate 16 channels for the full TNG-5. The number of ADC channels should be a
module parameter.

• SPI Ports: Previous software versions supported a single SPI port. Port expansion was
accomplished by using Port D bits to create extra chip select lines. The full and lite versions
of TNG-5 have two built-in SPI ports (Just wait. It gets even better) while the ultralite
version has just one. The question is whether to treat the ports separately or the same.

The problem with treating the ports as separate is that they really aren’t. The clock and data
lines are shared by all SPI and Mezzanine ports. Data cannot be exchanged with multiple SPI
devices simultaneously.

On the other hand, the select lines used by default for each port are physically different and
are not really usable by the others. Moreover, the physical layout would make it better to
associate Port B select lines with SPI port 1 and Port D select lines with SPI port 2. I’m
inclined toward supporting separate SPI ports, while recognizing that this might confuse an
end user who might have a hard time understanding why messages can’t be sent to the two
SPI ports simultaneously.

Another issue is speed. The internal speed of the TNG-5 microcontroller is 32 MHz. The
TNG-4 SPI clock was 1 MHz in its default configuration. Most existing SPI-compatible
devices in our inventory cannot be clocked faster than 10 MHz. Of greater concern is the
effect of rates above 1 MHz on useful cable lengths, particularly when those cables are
constructed from ribbon cable. Therefore, SPI clock speed has to be intelligently addressed
for TNG-5.

• Mezzanine Ports: These two ports only exist on the full version of TNG-5. The interface
with the microcontroller is effectively another SPI port. Each mezzanine card has two chip
select lines, and two general purpose digital I/O lines. Again, the clock and data lines are
shared with each other and the SPI ports. Again, I support the idea of treating them as
separate ports.

• RS-232 Port: This port only exists on the full version. It is my intent to treat it substantially
like an SPI port. The baud rate should be software selectable. There are two TLL digital I/O
lines associated with this port. I don’t think that this port would really support continuous
bidirectional asynchronous serial communications at any real speed. The intent was to be
able to be able to talk to legacy peripherals (like a blood pressure monitor)—the kind of
communications where a command string is sent and maybe a response returned (like a
command mode TNG-4).

• MMC: The MMC device looks like (guess what?) another SPI port. This feature was
envisioned for situations where TNG-5 is working as a data logger in a stand-alone capacity.
Moreover, the data needs to be written in a compatible format. I’m not going to provide
support for this feature right now.

 - 7 -

• USB interface: The USB-to-serial IC used in TNG-5 is the FT232BM from FTDI. Two
software drivers are available: a virtual COM port (www.ftdichip.com/FTWinDriver.htm),
and a DLL (www.ftdichip.com/FTD2XXDriver.htm). Initially, I intend to use the virtual
COM port driver. Eventually, we may want to use the DLL driver. Also, support for USB 2.0
descriptor strings and settings are provided in the form of an on-board EEPROM. Using and
programming this EEPROM needs to be investigated.

• Data Rate: The interface rate is going to be nominally 128 kbps. The fastest possible rate
using optical isolation is about 200 kbps. Without the optical isolation 1 Mbps is possible.
These speeds are going to be difficult to sustain (and obtain) in certain applications. Baud
rate should be a parameter. I expect to use the on-board configuration switch to select initial
baud rate. There should be a baud rate command. On initialization, though, everyone has to
agree to start at the same rate.

• Sample Rate: Sample rates and data rate are intertwined. The rate that samples are sent can
not exceed the data rate. However, it can be much slower. A mechanism for altering sample
rate needs to be implemented.

• Command Mode vs. Streaming Mode: With TNG-3b we had little choice but to implement
a streaming mode as there was no way to send commands. TNG-4 saw the advent of
command mode, but even the streaming mode protocol recognized that output and
configuration only needed to be sent when changed. Both TNG-3b and TNG-4 used a
moderately fast RS-232 connection. Now that the TNG-5 family is targeted a host of
operational environments which include sharing bandwidth with other devices on a data bus
(USB and Ethernet), it should be better behaved. We’ve discussed implementing both the
command and streaming modes within the same device, selected by switch setting. I think we
need to meld the two modes into a pseudo-streaming mode. TNG-5 could be commanded to
repeatedly transmit a block of data with a fixed interval between transmissions. This stream
could be suspended for certain other commands, and then reinstated. Also, a switch selection
could enable a default block transmission after initialization subject to modification by
command.

 - 8 -

TNG-5 Commands:
TNG-5 commands are ASCII bytes (To send the “9D” command, transmit a single byte equal to
that value, not the ASCII characters “9” and “D”). Command byte values are in hexadecimal.
The following commands are supported:

90: Read first bank memory byte. Reads any memory location (0-255). The memory location
to read is specified in the byte sent immediately following the command. The command returns
one byte that is the value of that location.

9D: Return ID/version. This command returns 30 bytes: “TNG-5 V1.0 ©2004 SenSyr,
LLC<CR><LF>”

BB: Set interface baud rate. Allows change of baud rate by command. The command expects
one subsequent byte that serves as a baud rate divisor for the new baud rate. The formula is: 32
MHz/ (64(X+1)). The default baud rate is determined by configuration switches. The first three
configuration switches (SW0-SW2) determine the baud rate at startup. The baud rates
corresponding to the values (0–7) of these switches are: 2400, 4800, 9600, 19200, 38400, 57600,
115200, and 125000 (128K).

CC: Get packet count. Returns a two-byte packet count (high, low).

F0: Reset packet number. In block mode each packet sent increments a 16-bit number that can
be optionally sent as part of the packet. This command resets the packet number to zero.

FF: Does nothing really. If you send it 3-6 times, then you’ll be sure that the next byte will be
interpreted as a command byte.

ADC Commands:
A0: Read ADC Channel 0. This command returns 2 bytes: MSB, LSB. The most significant 8
bits are returned in the first byte. The second byte contains the least significant 2 bits left-
justified in the byte (the remaining bits = 0). To convert this number to an integer right shift the
combined word by 4-bits. Some care must be exercised in using the single channel read
commands. There are limits to the time resolution of the samples. The ADC sampling process is
independent of the data interface. At 128 kbps you could theoretically obtain 6400 samples per
second using a single channel command; however, the channel’s data is not updated that fast.
The maximum usable sample rate is 1250 Hz.

A1: Read ADC Channel 1.
A2: Read ADC Channel 2.
A3: Read ADC Channel 3.
A4: Read ADC Channel 4.
A5: Read ADC Channel 5.
A6: Read ADC Channel 6.
A7: Read ADC Channel 7.
A8: Read ADC Channel 8.

 - 9 -

A9: Read ADC Channel 9.
AA: Read ADC Channel 10.
AB: Read ADC Channel 11.
AC: Read ADC Channel 12.
AD: Read ADC Channel 13.
AE: Read ADC Channel 14.
AF: Read ADC Channel 15.

C0: Read the first N ADC channels where N ranges from 1 to 16. The number of consecutive
ADC channels to read is sent in a byte immediately following the command. The total number of
bytes returned is dependent on N (N+((N+1)/2)). The most significant bytes are returned first.
The least significant nibbles are returned packed into bytes. Odd ADC channel data is in the high
nibble. This scheme is common to all the multiple channel commands.

C1: Read ADC channels 0-3.
C2: Read ADC channels 4-7.
C3: Read ADC channels 8-11.
C4: Read ADC channels 12-15.
C8: Read ADC channels 0-7.
CF: Read ADC channels 8-15.

CA: Read all ADC channels. This command returns the data for all 16 ADC channels (24
bytes).

Digital I/O Commands:
BC: Set Port-B configuration. This command takes the next byte received as the Port-B
configuration data byte. Each bit of the configuration byte corresponds to a port bit. Set
configuration bits to 1 to enable input, 0 for output. This is similar for Port D.

DC: Set Port-D configuration. This command takes the next byte received as the Port-D
configuration data byte.

BF: Read Port-B configuration. Returns one byte where bits = 1 are inputs.

DF: Read Port-D configuration. Returns one configuration byte.

Port C cannot be configured. Port C bits are pre-defined. The least significant 3 bits are defined
as outputs, and can be written. This has proved useful on at least one occasion when I was
implementing a specific SPI protocol.

BD: Write Port-B data. This command takes the next received byte as data to write to Port-B.

CD: Write Port-C data. This command takes the next received byte as data to write to Port-C.

DD: Write Port-D data. This command takes the next received byte as data to write to Port-D.

 - 10 -

FB: Read Port-B data. This command sends one byte read from Port-B.

FC: Read Port-C data. This command sends one byte read from Port-C (just to be complete).

FD: Read Port-D data. This command sends one byte read from Port-D.

FA: Read Port B and D together. This command returns 2 bytes—Port-B, and Port-D.

BF: Read Port B configuration data. This command returns the one-byte Port B mask.

DF: Read Port D configuration data. This command returns the one-byte Port D mask.

DB: Write B and D digital I/O ports. This command accepts the next two bytes sent as data for
Ports B, and D, respectively.

Alarm Commands:
Each ADC channel can have a high and/or low level alarm condition associated with it. A high-
level alarm occurs if the value of the associated ADC channel exceeds the alarm limit. A low-
level alarm occurs if the value of the associated ADC channel is below the alarm limit. The
alarm values are single-byte values corresponding to the most-significant bits of the ADC value
for an analog input channel.

A 16-bit mask is stored for each ADC channel and alarm type. Each bit of the alarm mask
corresponds to a bit in Port B and Port D. When the alarm condition occurs, the bits (assumed to
be configured as outputs) specified by the nonzero bits in the mask are inverted. That is, if the bit
was 0 it is set to 1 and vice versa. Once set, alarms need to be reset.

F1: Get High Alarm Status. Returns 2 bytes: ADC alarms 15-8 and ADC alarms 7-0. Each
bit=1 indicates an alarm condition in that ADC channel.

F2: Get Low Alarm Status Returns 2 bytes as in F1.

F3: Clear alarm. This command interprets the next byte sent as follows:

 Where H = 1 if clearing high alarm.
 L = 1 if clearing low alarm.
 X = don’t care (0).
 And D0-D3 = Channel number (0-15).

7 6 5 4 3 2 1 0

H L X X D3 D2 D1 D0

 - 11 -

F4: Alarm Set. The subsequent four bytes are interpreted as follows:

 Byte 1:

 Where H = 1 if setting high alarm.
 L = 1 if setting low alarm (don’t set both at once).
 X = don’t care (0).
 And D0-D3 = Channel number (0-15).

 Byte 2: High byte of ADC channel limit.
 Byte 3: Port B mask.
 Byte 4: Port D mask.

F5: Disable Alarm. Turns off the high and/or low alarm for a given ADC channel. Subsequent
byte is interpreted as in F3 command. Masks and thresholds are unaffected.

F6: Enable Alarm. Turns on the high and/or low alarm for a given ADC channel. Subsequent
byte is interpreted as in F3 command. Masks and thresholds are assumed to have been previously
set.

F7: Disable All Alarms. All alarms are disabled. Masks and thresholds are unaffected.

F8: Enable All Alarms. Masks and thresholds are assumed to have been previously set.

7 6 5 4 3 2 1 0

H L X X D3 D2 D1 D0

 - 12 -

RS-232 Commands:
TNG-5 has a secondary RS-232 port whose operation is dependent on how the board is
populated. The port can support true RS-232 levels, TTL levels or inverted TTL levels. These
operational modes are not software selectable. Two TTL-level I/O lines are associated with this
port—GPIO1 and GPIO2. The port has a 32 character input buffer and a 32 character output
buffer.

D0: Sets RS-232 port baud rate. The subsequent byte is used as a divisor for the baud rate
generator (BRGH=0: 32 MHz/ (64(X+1)); BRGH=1: 32 MHz/(16(X+1))). X is the divisor.
The default baud rate is 9600 (33h; BRGH=0).

D1: Configure RS-232 port. The subsequent byte is interpreted as follows:

 Where X = don’t care (0), BRGH = 0 for 32 MHz/(64(X+1)) baud rate
 formula and BRGH =1 for 32 MHz/(16(X+1)) baud rate formula. GPIO1 and
 GPIO2 are set to 1 to designate the corresponding line to be an input. They are
 set to 0 to designate that the corresponding line should be an output.

D2: Clear input buffer. All bytes in the input buffer are discarded.

D3: Clear output buffer. All bytes in the output buffer are discarded and the port is reset.

D4: Number of characters in the input buffer. This command returns one byte (0-32)
corresponding to the number of characters currently in the input buffer.

D5: Number of characters in the output buffer. This command returns one byte (0-32)
corresponding to the number of characters currently in the output buffer.

D8: Write N characters to the RS-232 port. Writes N (0-32) characters to the output buffer of
the RS-232 port. The byte subsequent to the command is interpreted as follows:

 Where D0-D5 is the number of bytes to send, and GPIO1 and GPIO2
 correspond to the state of the GPIO2 and GPIO1, assuming they are
 configured as outputs.

7 6 5 4 3 2 1 0

X X X X X BRGH GPIO2 GPIO1

7 6 5 4 3 2 1 0

GPIO2 GPIO1 D5 D4 D3 D2 D1 D0

 - 13 -

Additional 0-N characters are sent corresponding to the number of data bytes. If N=0, then only
the state of GPIO1 and GPIO2 are affected.

D9: Read N characters from the RS-232 port. The subsequent data byte is read as N. If N is
greater than the number of characters in the buffer, then only those characters are sent. The
return data are N+1 bytes where the first byte is as in the D8 command. GPIO1 and GPIO2 are
the state of those two data lines assuming they are configured as inputs. D0-D5 corresponds to
the number of returned data bytes from the buffer to follow. If N is 0, then only the first byte is
returned.

 - 14 -

SPI Commands:
9C: SPI Configure. This command redefines all SPI operations and Mezzanine operations until
the next SPI configuration byte is received or TNG-5 is power-cycled. This command gets two
subsequent bytes.

 Byte 1:

 SMP = SSPSTAT:SMP bit for PIC with same meaning.
 1 = Input sampled at end of output.
 0 = Input sampled in middle of output bit (default).

 CKE = SSPSTAT:CKE bit for PIC with same meaning.
 1 = Data output on leading edge of clock (default).
 0 = Data output on trailing edge of clock.
 CKP = SSPCON:CKP bit for PIC with same meaning.
 0 = Clock normally low (default).
 1 = Clock normally high.

 SSPM1 and SSPM0 set the clock rate.

 00=FOSC/4 (8MHz, default)
 01=FOSC/16 (2MHz).
 10=FOSC/64 (500kHz).
 11=TMR2/2 Rate (TMR2=[8MHz/(1-256)])

 Byte 2: Is the TMR2 value (0-255) or 0 if not being set.

98: SPI 1 write/read. This command requires a subsequent SPI flag byte and 1-6 or 8-256
data bytes. The SPI flag byte is detailed below. If the read bit is set, TNG-5 will return the
number of bytes sent.

 R/W: This bit = 0 when data is output only.

 This bit = 1 when reading data.

 S2-S0: These bits specify which SPI enable line to use.
 000 = Port C bit 1
 001 = Port B bit 7

7 6 5 4 3 2 1 0

SMP CKE --- CKP -- --- SSPM1 SSPM0

7 6 5 4 3 2 1 0

R/W S2 S1 S0 -- D2 D1 D0

 - 15 -

 010 = Port B bit 6
 011 = Port B bit 5
 100 = Port B bit 4
 101 = Port B bit 3
 110 = Port B bit 2
 111 = Port B bit 1

 D2-D0: These bits specify the number of data bytes to send/receive (1-6).
When D2-D0 equals 7, the next byte sent will be interpreted as the
number of subsequent bytes in the message. If this next byte is zero,
no bytes are sent or received.

99: SPI 2 write/read. This command requires a subsequent SPI flag byte and 1-6 or 8-256
data bytes. The SPI flag byte is detailed below. If the read bit is set, TNG-5 will return the
number of bytes sent.

 R/W: This bit = 0 when data is output only.

 This bit = 1 when reading data.

 S2-S0: These bits specify which SPI enable line to use.
 000 = Port C bit 2
 001 = Port D bit 7
 010 = Port D bit 6
 011 = Port D bit 5
 100 = Port D bit 4
 101 = Port D bit 3
 110 = Port D bit 2
 111 = Port D bit 1

 D2-D0: These bits specify the number of data bytes to send/receive (1-6).
When D2-D0 equals 7, the next byte sent will be interpreted as the
number of subsequent bytes in the message. If this next byte is zero,
no bytes are sent or received.

7 6 5 4 3 2 1 0

R/W S2 S1 S0 -- D2 D1 D0

 - 16 -

Mezzanine commands:
There are two mezzanine ports. Each port has two possible select lines and two general-purpose
lines.

9A: Mezzanine 1 write/read. This command requires a subsequent flag byte and 1-6 or 8-256
data bytes. The Mezzanine flag byte is detailed below. If the read bit is set, TNG-5 will return
the number of bytes sent.

 R/W: This bit = 0 when data is output only.

 This bit = 1 when reading data.

 S0-S1: These bits specify which SPI enable line to use.
 00 = Use mezzanine select line 1
 01 = Use mezzanine select line 2
 10 = Use general purpose I/O line 1
 11 = Use general purpose I/O line 2

 D2-D0: These bits specify the number of data bytes to send/receive (1-6).
When D2-D0 equals 7, the next byte sent will be interpreted as the
number of subsequent bytes in the message. If this next byte is zero,
no bytes are sent or received.

9B: Mezzanine 2 write/read. This command requires a subsequent flag byte and 1-6 or 8-256
data bytes. The Mezzanine flag byte is detailed below. If the read bit is set, TNG-5 will return
the number of bytes sent.

 R/W: This bit = 0 when data is output only.

 This bit = 1 when reading data.

 S0-S1: These bits specify which SPI enable line to use.
 00 = Use mezzanine select line 1
 01 = Use mezzanine select line 2
 10 = Use general purpose I/O line 1
 11 = Use general purpose I/O line 2

7 6 5 4 3 2 1 0

R/W -- S1 S0 -- D2 D1 D0

7 6 5 4 3 2 1 0

R/W -- S1 S0 -- D2 D1 D0

 - 17 -

 D2-D0: These bits specify the number of data bytes to send/receive (1-6).
When D2-D0 equals 7, the next byte sent will be interpreted as the
number of subsequent bytes in the message. If this next byte is zero,
no bytes are sent or received.

E0: Mezzanine status. Returns the status of both sets of mezzanine I/O lines assuming that the
lines have been configured as inputs as follows:

ED: Write mezzanine I/O bits. Takes subsequent byte as state of mezzanine I/O bits assuming
that the lines have been configured as outputs. Refer to E0 command for data byte structure.

EC: Configure mezzanine ports. Takes one subsequent byte to set the general-purpose I/O lines
as inputs (bit=1) or outputs (bit=0). Refer to E0 command for data byte structure.

7 6 5 4 3 2 1 0

-- -- M2.1 M2.0 -- -- M1.1 M1.0

 - 18 -

Block data commands:
In the interest of maintaining some sort of streaming mode, I am creating the block data
commands. The SW7 configuration switches can be used to set this mode as the default (125
blocks/second).

A data block (packet) consists of a start byte (alternating 55/AA) followed by a flag byte and
one or more data bytes. The data bytes sent are defined by settable parameters. ADC data is sent
packed.

B0: Block send off. Turns off block data transmission.

B1: Block send on. Turns on block data transmission as per B4, B8, and B9.

B4: Set sample interval. Two subsequent bytes (HB,LB) set a divisor that determines an
interval between transmissions. The minimum sample interval is very much affected by the
current baud rate. Minimum interval = 1/[(baud rate/10)/packet size)]. Each count corresponds to
one millisecond.

B8: Set number of ADC Channels to send. Subsequent byte is number of channels starting at 0.

B9: Set DIO mask. One subsequent data byte determines what digital data is sent, as follows:

 Where PN = 1 to send packet number.
 PD = 1 to send Port D data.
 And PB = 1 to send Port B data.

7 6 5 4 3 2 1 0

-- -- -- -- -- PN PD PB

 - 19 -

Fully tricked-out packet:

Flag Byte: PN = 1 if packet number is included.
 PD = 1 if Port D data sent.
 PB = 1 if Port B data sent.
 and ADC0-4 = number of ADC channels sent starting with ADC 0.

7 6 5 4 3 2 1 0
Byte 1 Separator Byte:
Byte 2 Flag Byte PN PD PB ADC4 ADC3 ADC2 ADC1 ADC0
Byte 3 A0 MSB
Byte 4 A1 MSB
Byte 5 A2 MSB
Byte 6 A3 MSB
Byte 7 A4 MSB
Byte 8 A5 MSB
Byte 9 A6MSB
Byte 10 A7MSB
Byte 11 A8 MSB
Byte 12 A9 MSB
Byte 13 A10 MSB
Byte 14 A11 MSB
Byte 15 A12 MSB
Byte 16 A13 MSB
Byte 17 A14 MSB
Byte 18 A15 MSB
Byte 19 A0/A1 LSB
Byte 20 A2/A3 LSB
Byte 21 A4/A5 LSB
Byte 22 A6/A7 LSB
Byte 23 A8/A9 LSB
Byte 24 A10/A11 LSB
Byte 25 A12/A13 LSB
Byte 26 A14/A15 LSB
Byte 27 Port B
Byte 28 Port D
Byte 29 Packet # (MSB)
Byte 30 Packet # (LSB)

Port B
Port D

Packet # (MSB)
Packet # (LSB)

A15

A0 (xx00)
A2
A4
A6
A8

A10
A12
A14

A7
A9

A11
A13

A15
A1
A3
A5

A11
A12
A13
A14

A7
A8
A9

A10

A3
A4
A5
A6

55 or AA

A0
A1
A2

 - 20 -

Command Table:
90 Send RAM byte B0 Block Send Off D0 RS-232 Baud F0 Clear Packet #
91 B1 Block Send On D1 RS-232 Config. F1 Get High Alarm
92 B2 D2 Clear Input Buf. F2 Get Low Alarm
93 B3 D3 Clear Out. Buf. F3 Clear Alarms
94 B4 Set Sample Int. D4 Inp. Buf. Char. F4 Alarm Set
95 B5 D5 Out.Buf. Char. F5 Disable Alarm
96 B6 D6 F6 Enable Alarm
97 B7 D7 F7 All Alarms Off
98 SPI 1 B8 Set ADC Mask D8 RS-232 Write N F8 All Alarms On
99 SPI 2 B9 Set DIO Mask D9 RS-232 Read N F9
9A Mezzanine 1 BA DA FA Read B and D
9B Mezzanine 2 BB Int. Baud Rate DB Write B and D FB Read Port B
9C SPI Configure BC Config. Port B DC Config. Port D FC Read Port C
9D ID command BD Write Port B DD Write Port D FD Read Port D
9E BE DE FE
9F BF Get Port B Conf. DF Get Port D Conf. FF Sync
A0 ADC Ch. 0 C0 ADC Ch. 0-N E0 Mezz. Status
A1 ADC Ch. 1 C1 ADC Ch, 0-3 E1
A2 ADC Ch. 2 C2 ADC Ch. 4-7 E2
A3 ADC Ch. 3 C3 ADC Ch. 8-11 E3
A4 ADC Ch. 4 C4 ADC Ch. 12-15 E4
A5 ADC Ch. 5 C5 E5
A6 ADC Ch. 6 C6 E6
A7 ADC Ch. 7 C7 E7
A8 ADC Ch. 8 C8 ADC Ch. 0-7 E8
A9 ADC Ch. 9 C9 E9
AA ADC Ch. 10 CA EA
AB ADC Ch. 11 CB EB
AC ADC Ch. 12 CC Get Packet # EC Conf. Mezz.
AD ADC Ch. 13 CD Write Port C ED Write Mezz. I/O
AE ADC Ch. 14 CE EE
AF ADC Ch. 15 CF ADC Ch. 8-15 EF

 - 21 -

Configuration Switch:

Switch Definition
SW0 Default Baud 0
SW1 Default Baud 1
SW2 Default Baud 2
SW3 undefined
SW4 undefined
SW5 undefined
SW6 undefined
SW7 Send Blocks on Start up

